A computational study of actin network formation and intracellular transport

Youngseok Kim, Giray Enkavi, Anthony Ho

PHYS 466 class project University of Illinois at Urbana-Champaign

May 12, 2011

- Cellular environment is highly complex
- 10⁶ proteins being produced per second
- Proteins have to be transported from the production sites (ribosomes) to various destinations

http://publications.nigms.nih.gov/insidethecell/chapter1.html

How do things move inside a cell?

http://www.physorg.com/news4101.html

Diffusion

 Only sufficient for small molecules (such as ATP or caetyl CoA)

Active transport

- "Cargos" carried by molecular motors along a system of polymerized filaments (cytosolic fibers)
- Like trucks on roadways
- Allows larger "cargos" to be transported

Cytoskeleton is the cell's skeleton

- Responsible for:
 - Cell shape and structure
 - Cellular division
 - Cellular motility
 - Intracellular transport
- Made of 3 types of fibers:
 - Microtubules (like highway)
 - Intermediate filaments
 - Actin filaments (like local roads)

http://publications.nigms.nih.gov/insidethecell/chapter1.html

Actin filaments are consisted of actin monomers

 Polarity: barbed end (+) and pointed end (-)

http://biomachina.org/research/projects/actin/

Actin monomers can
polymerize and depolymerize
at both ends; but barbed ends
favor polymerizations while
pointed ends favor
depolymerizations

http://manual.blueprint.org/Home/glossary-of-terms/mechano-glossary-a/mechano-glossary-treadmilling/glossary-factors-influencing-actin-filaments

Actin filaments, with actin binding proteins, can form a network

- Different actin-binding proteins affecting actin dynamics:
 - Arp2/3 (branching protein)
 - CAPZ α/β (capping protein)
 - Fliamin (cross linking protein)

https://science.nichd.nih.gov/confluence/display/sob/Actin+Filament+Networks

Molecular motors carries cargos on microtubules and actin filaments

 Myosin V, an ATP-dependent motor, "walks" on actin filaments with a step size of 37nm

Cargos can move on both Microtubules and Actin Filaments Nucleus Microtubule

Yildiz et al, Science 2003

- Actin monomers:
 - Modeled as a 5-nm-long rigid rods
- Polymerization
 - Adding a free actin monomer to an existing actin filament
 - Assuming only at the barbed end
- Depolymerization
 - Removing a bounded actin monomer from an existing actin filament
 - Assuming only at the pointed end
- Branching
 - Attaching a free actin monomer to anywhere along an actin filament with a branching angle of 70°
- Capping
 - Adding a capping protein to the barbed end of an actin filament
 - Prevents the filament from further polymerization

- Place a randomly oriented actin monomer at the origin
- At each iteration:
 - Actin polymerization occurs at a randomly chosen filament with a probability $P_{\scriptscriptstyle +}$
 - Actin depolymerization occurs at a randomly chosen filament with a probability P_{-}
 - Branching occurs at a randomly chosen filament with a probability P_{br}
 - Capping occurs at a randomly chosen filament with a probability of P_{cap}

Probabilities and reaction rates

- Experimental actin polymerization/depolymerization rates are known (at both ends): k_B^+ , k_P^+ , k_B^- , k_P^-
 - Assuming only net polymerization occurs at barbed ends, and net depolymerization occurs at pointed ends:

Net polymerization rate at b-end =
$$K_+ = k_B^+ C - k_B^-$$

Net depolymerization rate at p-end = $K_- = k_P^- - k_P^+ C$

- The probability P_+ and P_- can be related to the experimental rates by: $\frac{P^+}{P^-} = \frac{K^+}{K^-}$
- The probability P_{br} and P_{cap} can be adjusted to optimize the network

Actin Network Examples

Concentration=0.6 µM

Concentration=1.8 µM

Actin Network Examples

- Put cargo on one of random branch points
- Forward movement 1 ~ 7 actin monomer (5~35nm)
- Equal transition probability when meet branching point

Modeling motor movement

Modeling motor movement

- Impose periodic boundary condition
- Since each branch remembers their own directional vector
- Cargo take directional vector and Cargo can move 'through' periodic boundary condition.

- Depends on initial concentration, branches show dense or sparse picture in periodic boundary condition.
- Cargo movement shows short or long path depends on actin filament patterns.

- Extract a configuration of actin filament at given initial concentration from Actin Filament Network simulation.
- Run 1000 run for each initial condition and average out.
- Look at the "travel distance" (Red), and "displacement" (Blue).

Properties of cargo movement

- For higher concentration, cargo makes more turn, and travel more distance.
- While travel distance increases, displacement is saturated.

Properties of cargo movement

- Cargo moves similar distance before it hops to another branch.
- However, displacement goes to saturate which means cargo movement is 'local'.

- Generate Actin filament patterns at different actin concentrations.
- Higher concentration leads to longer branches and low concentration leads sparse patterns and shorter branches.

- The denser the pattern, the more distance cargo travels.
- However, displacement of cargo does not change as much.